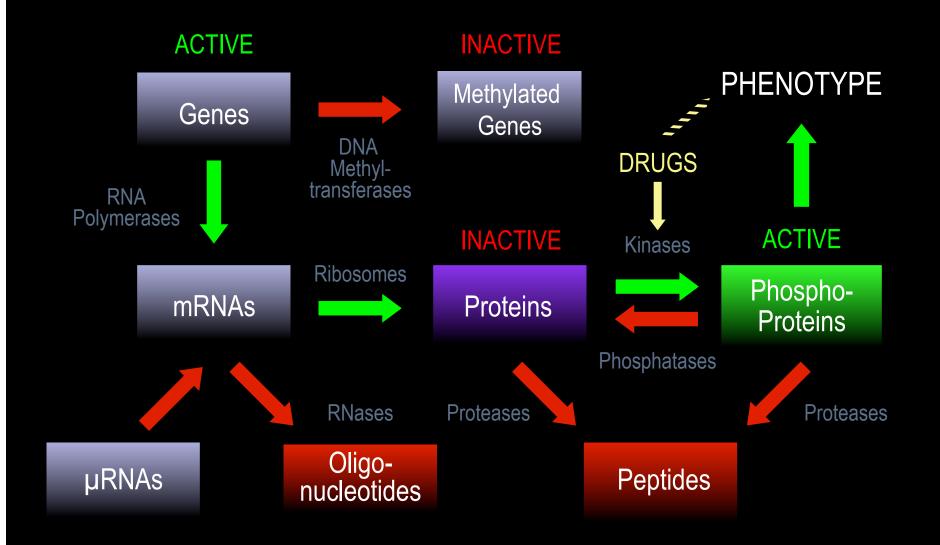
Phosphoproteomics and the Origin and Operations of the Kineome

Presented by Steven Pelech, Ph.D.

Professor, Department of Medicine, University of British Columbia President & CSO, Kinexus Bioinformatics Corp.



Presented at the OMICS Group 4th International Conference on Proteomics & Bioinformatics in Northbrook, IL, USA, 2014 Aug. 5

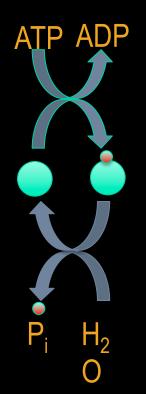
Copyright 2014 Steven Pelech (spelech@kinexus.ca)

KINEXUS Phenotype Reflects Functional Protein

Protein Kinase Gene Numbers

Common Name	Scientific Name	#Genes	#Protein Kinases
Baker's yeast	Sacchar. cerevisiae	6,300	122
Cat	Felis silvestris	20,285	
Chicken	Gallus gallus	23,000	546
Chimpanzee	Pan troglodytes	30,000	587
Cow	Bos taurus	22,000	
Dog	Lupus familis	40,000	656
Fruit fly	Dros. melanogaster	14,000	319 (232)
Honey bee	Apis mellifera	10,157	, , , , , , , , , , , , , , , , , , ,
Human	Homo sapiens	21,500	>536 (505)
Maize	Zea mays	32,000	· · · · · · · · · · · · · · · · · · ·
Mouse	Mus musculus	23,800	510 (527)
Nematode worm	Caenorhab. elegans	22,900	437 (434)
Poplar tree	Populus trichocarpa	45,555	× ,
Rat	Rattus norvegicus	30,000	521
Red bread mold	Neurospora crassa	10,000	103
Rhesus Macaque	Macaca mulatta	18,296	821
Rice	Oryza sativa	56,000	1429
Sea urchin	Strongylocentrotus purpuratus	23,300	353
Thale Cress	Arabidopsis thaliana	27,000	1049
Tiger blowfish	Takifugu rubripes	31,000	519
Zebra Danio	Brachvdanio rerio	24,200	

Human Protein Phosphorylation



PHOSPHATOME

~21,500 total protein genes

>536 protein kinase genes>1000 catalytically active protein kinase isoforms

~1,000,000 predicted phosphorylation sites (>180,000 experimentally confirmed)

>156 protein phosphatase genes

Statistics on the Human Phosphoproteome

Number of human phosphosites known:	>180,000
Number of human phosphoproteins identified:	>19,800
Percent serine phosphorylation sites:	53.5%*
Percent threonine phosphorylation sites:	25.2%*
Percent tyrosine phosphorylation sites:	21.3%*

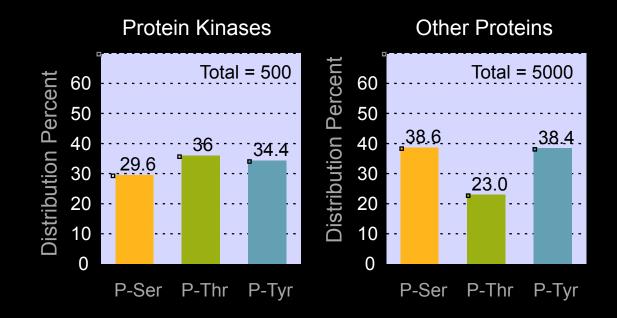
*Based on 159,540 human phosphosites identified by mass spectrometry

Based on 60,000 human phosphosites identified by mass spectrometry without specific enrichment of tyrosine phosphorylation

Percent serine phosphorylation sites: 76%
 Percent threonine phosphorylation sites: 20%
 Percent tyrosine phosphorylation sites: 4%
 Number of tyrosine phosphosites known: >36,194
 Minimum number of human phosphosites: (36,000 x 25 =) 900,000
 Probable number of human phosphosites: 1,000,000

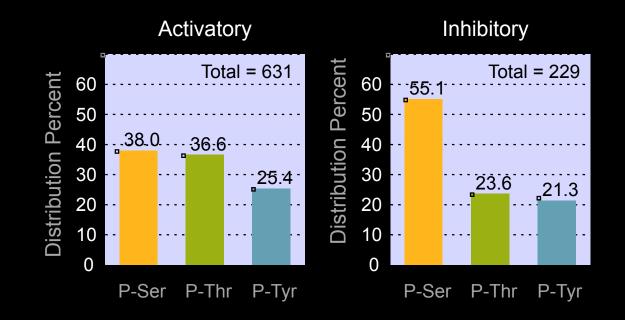
KiNEXUS Number of Phosphosites per Protein

Danaant	a a a a f	Latal "		
Percent	ade or	IOIALI	DAOSI	nosites
	age or		JIIOOP	


- Estimated number of total phosphosites (assume 1,000,000 total sites)
- Estimated number of phosphosites per average protein (assume 21,500 proteins encoded by human genome)
- Phosphosite frequency Average length of peptide in amino acids with a phosphosite
- Frequency of selected amino acid in general in human proteins
- Number of selected amino acids per average protein (average protein is 703)
- Percent phosphosites per total available selected amino acids
- Ratio phosphosites per total
- available selected amino acids

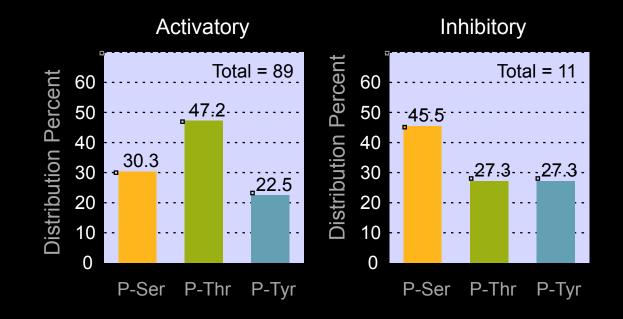
Selected Amino Acid

Serine 76%	Threonine 20%	Tyrosine 4%
760,000	200,000	40,000
35.3	9.30	1.86
19.9	75.6	378
7.1%	6.0%	3.2%
49.91	42.18	22.50
70.7%	22%	8.3%
2/3	1/5	1/12


Most Evolutionary Conserved Human Phosphosites

About 9% of the most conserved phosphosites are found in protein kinases, which represent about 2.5% of all of the human protein genes
While about 76% of phosphosites in general are P-Ser, in the most conserved phosphosites in protein kinases, P-Thr is the most prevalent

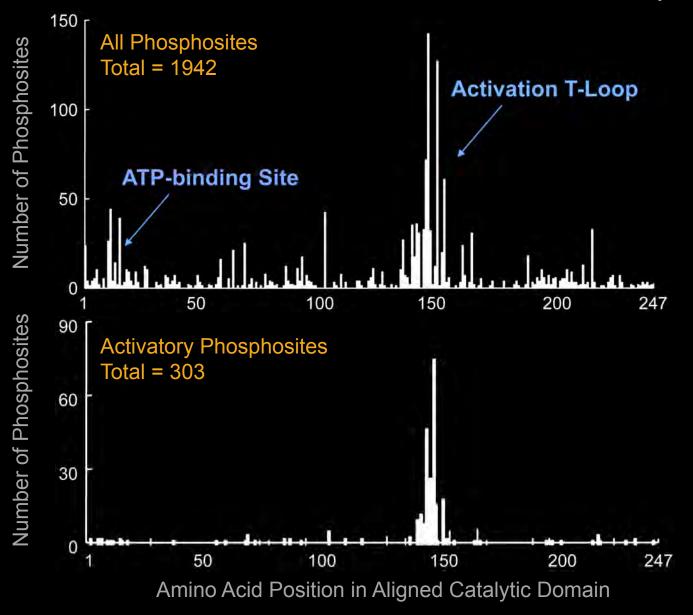
Kinase Phosphoamino Acid Distribution


Functional Human Kinase Phosphosites

In general, functional phosphosites are more likely to be activatory than inhibitory – 2.8:1 ratio

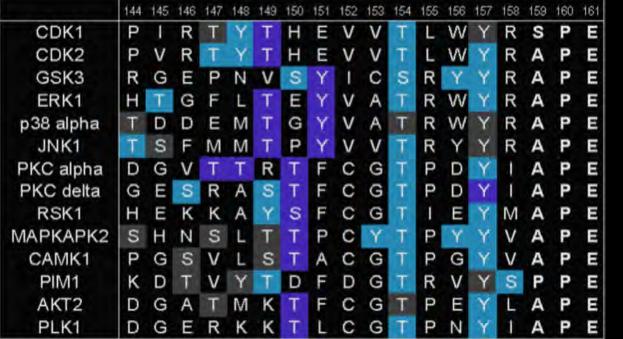
Kinase Phospho-amino Acid Distribution

Most Conserved Functional Human Kinase Phosphosites



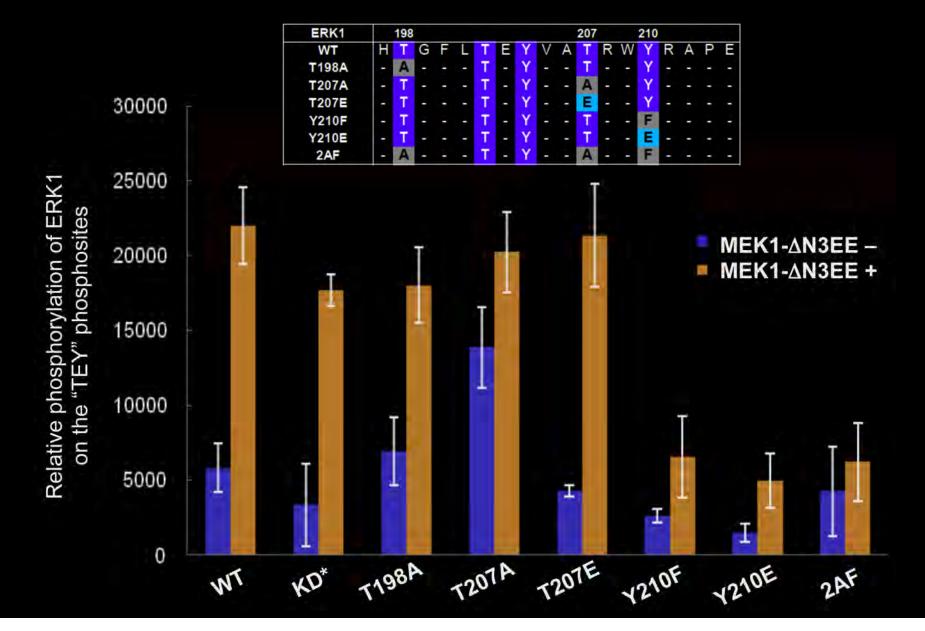
Functional phosphosites that are conserved are more likely to be activatory than inhibitory in kinases – 8:1 ratio

Human Kinase Catalytic Domain


Distribution of Phosphosites

Human Kinase Catalytic Domain

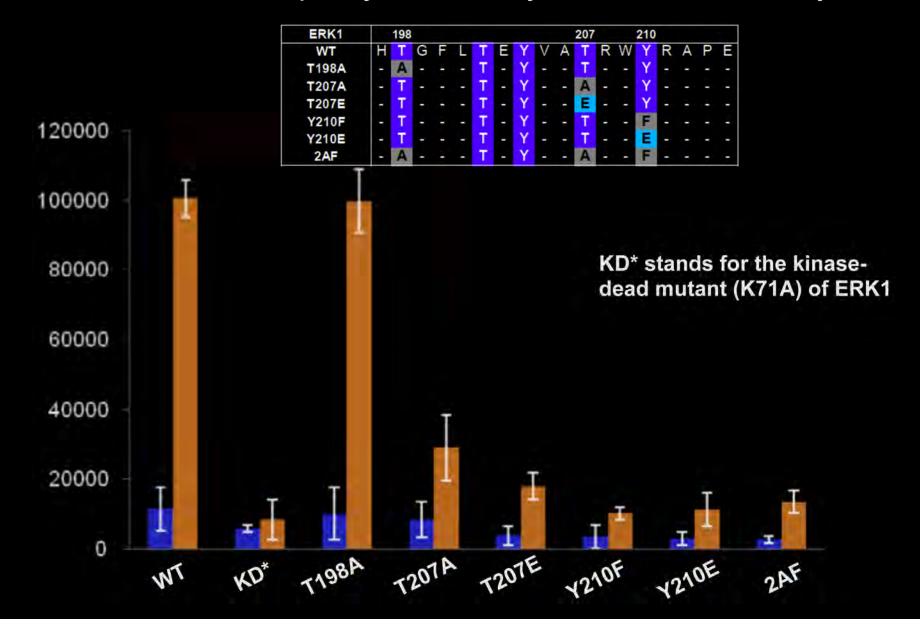
Phosphosites Between Kinase Subdomains VII and VIII


Purple, confirmed activation sites; Blue, confirmed phosphosites with unknown function; Grey, potential phosphosites based on similarities

Kinase Catalytic Domain residues 149-151 most commonly feature activatory phosphosites

🛞 Kinexus

ERK1 As a Paradigm

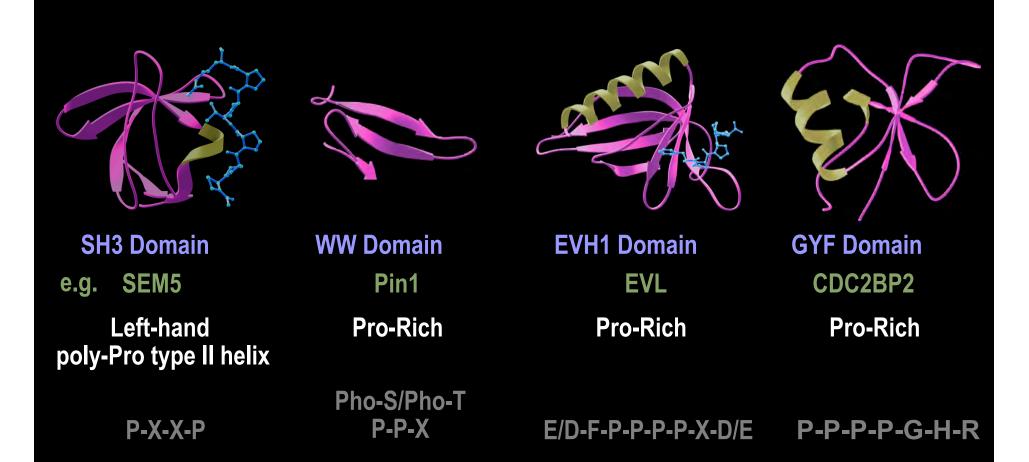

Role Phosphosites Between Kinase Subdomains VII and VIII

« Kiniexus

Role of Flanking Phosphosites

Phosphorylation of Myelin Basic Protein by ERK1

KiNEXUS Human Serine Phosphorylation Sites


Amino Acids Commonly Surrounding Serine Phosphosites

	-7	-6	-5	-4	-3	-2	-1	+1	+2	+3	+4	+5	+6	+7		
Ser	15	15	6	43	3	55	18	-44	40	20	36	17	20	15	S	Phospho-
Pro	6	-1	4	-6	-18	17	-1	326	8	4	-15	9	-8	6	Р	serine
Glu	-4	-1	-13	5	-22	-20	-33	-20	40	68	20	20	11	16	E	
Arg	14	23	50	20	179	65	-1	-57	-23	-3	-18	6	11	-5	R	at 0 position
Ala	14	12	6	-8	-4	15	16	-42	1	8	-6	5	4	4	Α	
Glu	0	-5	-8	-5	-2	-22	27	-36	2	2	-7	-15	-3	-9	G	Based on
Leu	-15	-6	26	-10	-10	-19	31	-18	-23	-16	4	-5	2	3	L	4035 human
Asp	-12	-21	-16	-8	-13	-15	26	32	25	18	5	16	6	2	D	sites
Lys	24	21	0	12	12	-24	-27	-64	-15	3	-4	-4	14	2	K	
Thr	-11	-3	-21	-7	-21	6	-21	-55	-1	-27	5	-9	-6	-14	Т	% Change
Val	-17	-12	-18	-21	-27	-32	-14	-23	13	-30	-9	-5	-10	-3	V	from
Gln	19	7	3	8	-4	-3	-22	-5	-7	-21	-5	-4	0	-4	Q	
Asn	-18	-11	-28	-16	-22	-18	8	-46	-29	-6	-14	-22	-16	-17	Ν	Expected
lle	-8	-14	7	-25	-32	-24	-7	-42	-30	-40	10	-18	-23	-5	I	>100
Phe	-25	-13	-23	-4	-29	-43	1	12	-58	-33	-14	-14	-27	-23	F	50 to 100
Tyr	-24	-28	-27	-27	-38	-22	-27	-43	-34	-28	-33	-20	-14	-12	Y	25 to 49
His	-15	15	13	-24	-26	-40	-8	-46	-47	-27	-16	-2	-15	-4	Н	0 to 24
Met	-22	-12	15	-25	-45	-36	-3	-28	-37	-24	0	-15	-21	-7	Μ	-25 to -1
Cys	-4	-28	-32	-11	-28	5	-7	-63	-14	-25	-25	-34	-29	-21	С	-50 to -26
Trp	3	-52	-27	-42	-49	-49	-49	-42	-45	-37	-15	-44	-40	9	W	-100 to -51

Percentage Changes from Expected Random Frequency

Proline appears at the +1 position in ~26% of P-Ser and P-Thr sites

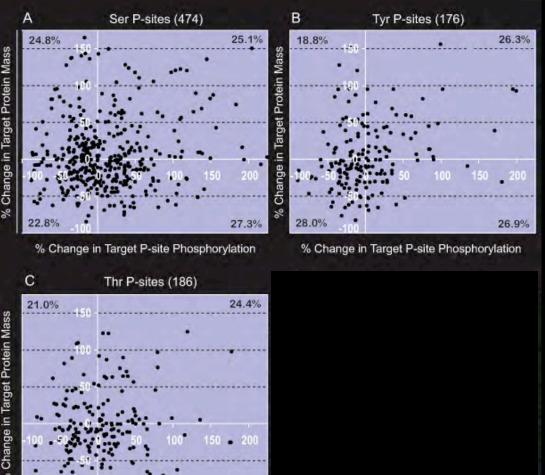
KINEXUS Role of Proline-directed Phosphorylation

Poly-proline-rich binding domains mediate protein-protein interactions. Phosphorylation may regulate these interactions.

Human Phosphorylation Sites

Very few phosphorylation sites appear to be targeted with high specificity by only a few kinases. Most phosphorylations are not functionally important.

- PEST sequences are rich in Pro, Glu, Ser and Thr
- PEST sequences are sites of known protein degradation
 e.g. cyclins C, D and E; PKC isoforms
- ~ 2,732 PEST sequences of 15 aa length with 3 or more prolines identified in human proteome (~18,619 sequences of 15 aa length with 2 or less prolines also identified - known as ST-rich sites)
- ~42% of PEST sequences appear to be phosphorylatable, compared to ~26% of ST-rich sites, despite more S and T in ST-rich sites
- Phosphorylation may serve to activate PEST sequences
 e.g. plant FRQ and CK1 phosphorylation


Kinexus

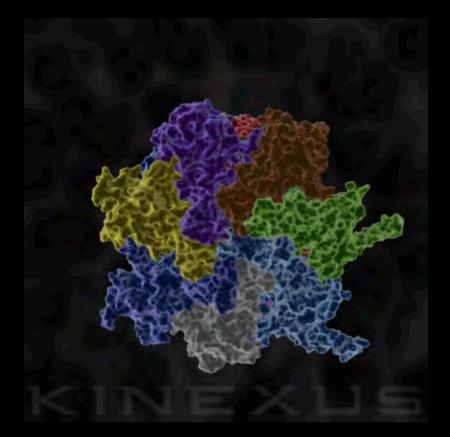
Role of Hyper-phosphorylation

Relationship between Protein Phosphorylation and Mass Based on 80 phospho-sites using immunoblotting (data from www.kinet.ca)

% Change in Target P-site Phosphorylation

- Serine Phosphosites
 - Positive correlation = 47.9 %
 - Negative correlation = 52.1 %
- Threonine Phosphosites
 - Positive correlation = 59.1 %
 - Negative correlation = 40.9 %
- Tyrosine Phosphosites
 - Positive correlation = 45.7 %
 - Negative correlation = 54.3 %

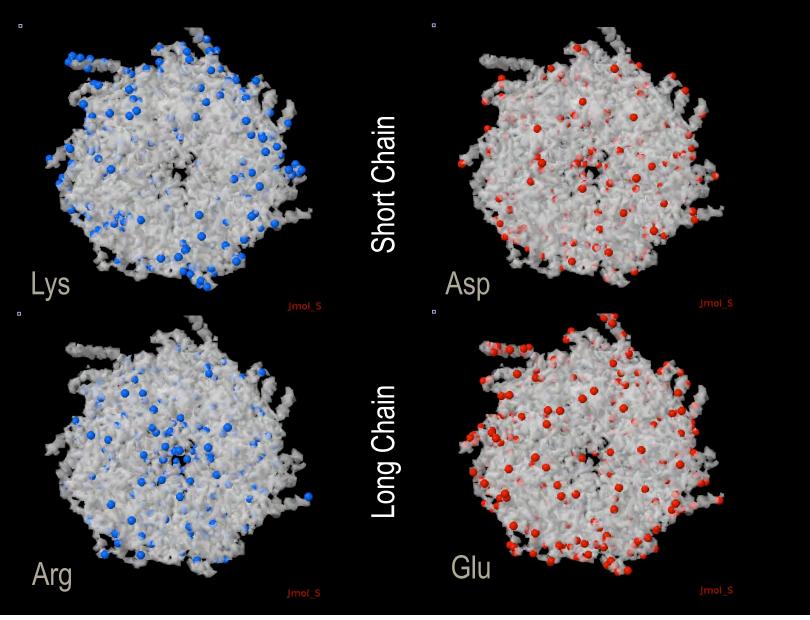
- Hyper-phosphorylation on serine and threonine may mediate the dissociation of protein complexes and protein degradation.
- Conversion to highly charged amino acids may drive protein unfolding
 - Globular proteins are converted to rods when they are coated with detergents such as sodium dodecylsulphate (SDS)
 - This is achieved because of the high negative charge on SDS; the hydrophobic part of the detergent binds to the protein and the negative charge of the sulphate permits solubilization
 - Similarly, the incorporation of highly charged clusters of phosphosites in proteins may also facilitate disruptions of their 3D structures
 - Unfolded proteins should be more susceptible to proteases



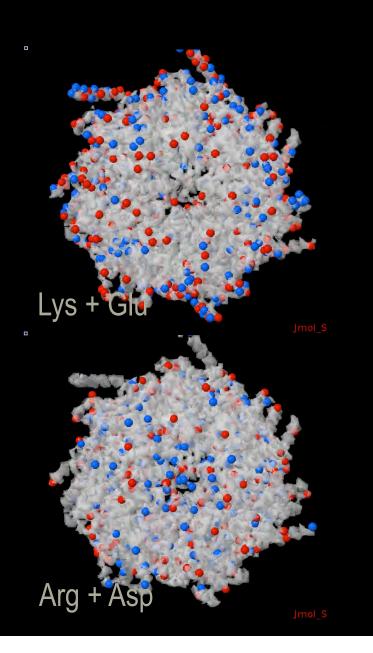
Role of Hyper-phosphorylation

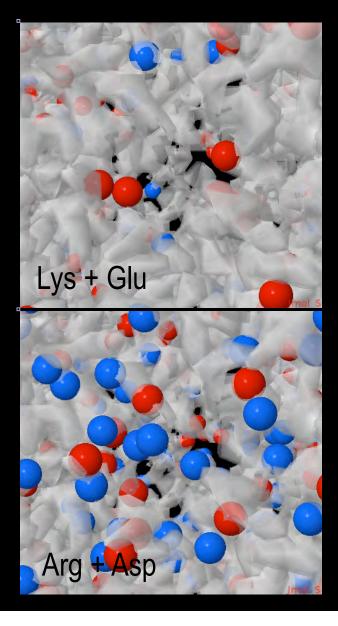
20S Proteosome

Hyperphosphorylation may facilitate protein degradation


20S proteosome mediates protein degradation into amino acids

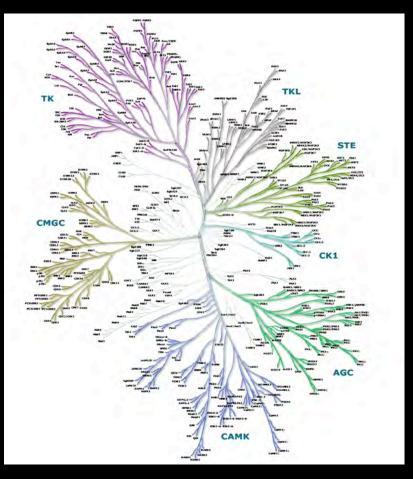
Role of Hyper-phosphorylation


20S Proteosome Active Site



Role of Hyper-phosphorylation

20S Proteosome Active Site



🛞 Kinexus

Origin of the Protein Kineome

The Source of the First Protein Kinase Gene

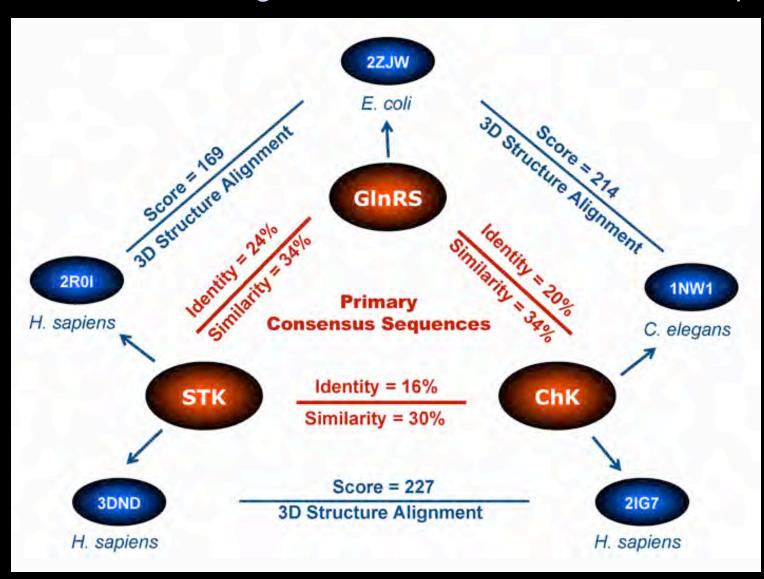
From Manning et al. Science 6 December 2002

- Aligned catalytic domains of protein-serine/threonine kinases to derived consensus sequence with 247 aa
- Blast other species and ignore protein kinase sequences
- Got matches with glutamine tRNA ligase (GlnRS; for protein synthesis) and choline kinase (ChK; for phosphatidylcholine biosynthesis)
- GINRS appears to be the source of the primordial protein kinase

Origin of the Protein Kineome

🛞 KINEXUS

Alignment of Protein Consensus Sequences


						1	6	1			10		1								GI	1				п		11			G2							Ш						G	3									NO	34
GInRS	FE	Q	-	E	C .	. (5 1	10	3 \	1	11	17	F	E	0	1	E	ε	-		2	4	÷	-	2	A	V	E /	A V	1	N	RI	N F	E	Q	LI	. v	E	R	Y	R	F	NN	1 G	L	L	м	G	E	VF	RH	< X	L	K	57.1
зтк	Y E	L	L	E	VI	- 0	; ; ;	-		5 1	= (3 H	<	Y	ĸ	A	R	-	K	x	т	G	x	ι	v	A	i	ĸ	1	ĸ	x	K I		E	Q	LI	F	E	1	ĸ	1	L	к)	¢ =	L	к	н	P	N	1	VH	< -	L	Y	X
ChK	GI	G	P	* K	t.	1	1	/ F	F	2	10	F	21	E	Ê	F	1	P	s	R	Ť	L	s	т	E	D	i.	R	P	Ē	1	s	X I	A	ŧ	ĸ	A A	, à	F	н	x	L	KA	1 P	L	s	к	E	PI	ĸv	NL	F	x	1	E
			v		v																GS	5																								G6		VI		1	лу	n vi	T		
GInRS	TI	. s	L	м	E	2 1	. F	20	3 E		11	. 1	< F			H	K	P	G	-	-	-	ĸ	4		4	T	DO	3 Y	v	v	T		ÍТ	M	E		L	L	к	Q	н	LE	1	-			-	H.	-	-	F P		E	P
зтк	LI	r L	v,	M	E	1		50	5 0	3 1		F	= c	L	L	ĸ	K	R	G		×	L	P	4	-	-	E	Ė E	E A	R	F	Y	LF	a a	÷.	L ;	K G	L	E	Y	L	H	s F	G	x		-	î	1.1	H	R	DL	. к	P	E
ChK	YL	E	t	v	k I	= 1	. >	(1	= >	(2 8		٩.,	ĸ	i	K	K	L	L	K	1	L	s	Y	D	L		E E	1	D	N	-		K K	t.	L	xc	L	x	s	P	v	VF		~	~	~	÷.	c	Н	N		à	E	G
				1	0	17		1	1	1	IJ	V	U V	I VI		VI	1	1	í	ľ		G8		1		1		1		Ĩ	F			VE	VII	VIE	1				G9		1			2	IX		IX		Б	X	1		
					_				1	0	1 1	. 1	N F	G	L	A	K	A	N			÷.	-		G	G	1.	C \	1.	R	F	D	ר כ	N	Ρ	E	K E	E	Е	Е	Y	1.7	TS	5 1	к	N	D	v	E١	N	LO	G F	E	P	YI
GInRS	GI	L	н	Ľ	GI	11	۱ ۲																												P	E											-				L D	2			v.
	GI	L	H D	I E	GI	11	3 -	1 1	+	(. /		D F	G	L	A	K	a	L	S	x	х	x	х	L	т	т	FC	G	T		Ē	YN	A	P	E	/ L	L	G	ĸ	x	G	YS	ĸ	K	v	D	i	w	SI	LO	s v	1	L	YI
зтк			H D+E	E				1 1	P			1		G	L	A	K	a							+						P	E	2	P P	P	E												+	-			R S	Y	LL	G
GINRS STK ChK	GI		H D + E	E				1 1				1		G	L	A	K	a		P	R		F		+						Ρ	E M	2	A	P	E		D			ĸ		P 1		E	x		+	-		IF	S V	Y		G
sтк	G I I I I I V 1		D + E	E					N	1				E	L	A	K	a	N	P	R	G	F	D	i	A	N	H	= c	E	P W	E G	Y C	A	F	F	R A X		Y	S	ĸ	Y	P 1	X	E	x	Q XII	+	-		I F	S V	Y		G
STK ChK			D + E A	EEES					2 1	1	(E			E	L	A + S	K	a	X	P	R	G G1 A	F 0 Y	v	i	A	Q	TF	E	E	P W L	E M G K	Y C	P	P F K	FI	X	R	Y	s	K C L	Y 1	P 1	X	E	x	Q XII R R	+	-		I F	S V	Y		G

- GINRS = Glutamine tRNA synthetase concensus sequence
- STK = Protein-serine/threonine kinase concensus sequence
- ChK = Choline kinase consensus sequence

Origin of the Protein Kineome

Alignment of Protein Consensus Sequences

The Emergence of Eukaryotic Cells

- Protein kinases are critical for the development of Molecular Intelligence systems in eukaryotic cells - with larger cells, communication becomes increasingly critical
- Choline kinase catalyzes the phosphorylation of choline, which is the first step in the synthesis of phosphatidylcholine and the main phospholipid found in cell eukaryotic cell membranes
- The duplication of mutation of the glutamine tRNA ligase gene on two separate occasions may have been major steps for the development of successful eukaryotic cells

Credits

Shenshen Lai Ph.D. Student UBC

Dr. Dirk Winkler Lab Manager, Kinexus

Javad Safaei Ph.D. Student UBC

 Dr. Steven Pelech President & CSO Phone: 604-323-2547 Ext. 10 E-mail: spelech@kinexus.ca

